JOURNAL OF COMPUTATIONAL PHYSICS 104, 263-266 (1993)

NOTE

Systolic Calculation of Pair Interactions Using the Cell Linked-Lists
Method on Multi-processor Systems

Methods generally used in molecular dynamics (MD)
simulations to speed up the calculation of forces by reducing
the number of operations that have to be performed mostly
fall into two classes: neighbour list [1] or cell linked-lists
{27 algorithms. The relative merits of both methods have
been discussed extensively in the literature (see, e.g.,
Ref. [3, 4]) and the discussion is not to be repeated here.
Let us only recall the conclusion that the ceil linked-lists
method becomes competitive if the potential cutoff radius r_
used in the particle—particle interaction calculation is small
compared to the system dimensions.

According to this method [5] the simulation box is
geometrically divided into a regular lattice of cells. These
cells are chosen so that the side of the cell / is greater than
the cutoff distance r.. For each cell it is established which
particles it contains. Two arrays are created during the par-
ticle sorting process. The head-of-chain array HEAD which
has one entry for each cell containing the identification
number of one particle (if any) contained in that cell, and
the linked-list array LIST {whose dimension is the number
of particles) containing the rest of particles indices. By
means of these arrays searching through the neighbours
is a rapid process. With reference to the two-dimensional
example of Fig. 1 the neighbours of any particle in cell 24
are to be found in cells 16, 17, 18, 23, 24, 25, 30, 31, 32 for
each of which a different path exists from HEAD through
LIST array which singles out all the particles contained in it.

The cell linked-lists method, as well as the neighbour list,
is suited for massively parallel computers with distributed
memory, but the exact way in which such parallelization
can be achieved strongly depends on the parallelization
scheme of the program in which those acceleration devices
have to be used. The cell linked-lists method has already
been implemented as part of a program which adopts a
geometric parallelization scheme [6]. A far less obvious
problem is how to adapt it to a systolic parallelization
scheme [7,8], where one cannot rely on any natural
partitioning of cells as in the geometric case. The present
note describes how to access the cell linked-lists method in
a systolic parallel context.

We begin by giving a rapid outline of the systolic
parallelization scheme, pointing out how the cell linked-list

263

acceleration device has to be used during the force evalua-
tion phases. For the sake of simplicity we will refer to two-
dimensional examples, but what we are going to say holds
true in both two and three dimensions. Consider a system
of N molecules whose pairwise interactions have to be
evaluated. Let P be the number of processors and n;
{i=1, .., P) be the number of molecules assigned to the ith
processor, with 7 n,=N. According to the typical
systolic approach, [7, 8], P identical processes run con-
currently on P processors connected by communication
channels to form a ring so that each processor receives data
from the neighbouring processor on one side and sends data
to the neighbouring processor on the other side. It is
convenient to think of data as forming P packets, each
containing, besides the usual coordinates and force
accumulators of the n; particles assigned to each processor,
the HEAD and LIST arrays. Packets move around the ring
in a synchronized manner so that every processor
simultaneously transmits a packet to its downstream
neighbour and receives a new packet from its upstream
neighbour,

The sequence of operations performed by every processor
is the following (see Fig. 2): at each MD integration step
each processor starts by filling the HEAD and LIST arrays
with its home particles’ indexes, performing the classical
sorting. Then it makes a copy of the data packet relative to
its particles. The original packet will remain fixed in the
home processor while the copy will circulate systolically
around the ring to return back to its home processor in P
puises. Initially, i.e., in the zeroth pulse, each processor
evaluates the interactions between the #, resident particles
by looping over all cells [5]. Then, P— 1 pulses follow, in
each of which every processor evaluates interactions among
home and circulating particles. However, now the generic
processor § will not perform the loop over all cells. Indeed,
during the first P—i pulses it will loop over those cells
whose index is even, while, in the remaining pulses, it will
loop over odd cells only. To bring each circulating data
packet back to its home processor a further pulse of pure
communication is needed. In the home processor the fixed
and circulating force accumulators are added to yield the
total force acting on each particle. It is then possible to

0021-9991/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

264

[42]43|44|45|46(47 /48
35/36/37(38|39|40] 41
|2sleola0|a1]32|33 34
21|pelpaleales|zel27
14[15[16]17]18]18]20
718l 9li0]11]12]13
HNBRHEEREE

1

FIG. 1. The simulation box is divided into a regular lattice of cells, The
side of the cell / is greater than the cutoff length r..

WHILE cycling
SEQ
. &0¥t 'home’ particles into cells by filling HEAD and LIST arrays
. make the copy of data packet to be circulated systolically
SEQ pulse = 0 FOR P
IF
pulse = 0
PAR
. talculate interacticns between ‘*home’ particles
by looping over all cells
. send %utgeing data packet to dosngiream neighbour
. Teceive incoming data packet from upstream neighbour

pulze > 0 AND pulse <= P - 3
SEQ
PAR

. calculate interactions between 'home’ particles
and particles receijved in the previous pulse
by looping cver even cells only

. send outgeing data packet to dewnstream neighbour

. receive incoming data packet from upstream neighbour

. copy incoming data packet into cutgeing data packet

pulse > P - i
SEG
PAR

. calculate interactions between ‘home’ particles
and particles received in the previous pulse
by looping over odd cells only

. send cutgoing data packet to downstream neighbour

. Teceive incoming data packet from upstream neighbour

. copy incoming data packet into outgeoing data packet

. last communication of data packets
. sum fixed and meving force accumulators
. integrate equations of metion to obtain new positicns

and velocities of 'home’ particles

FIG. 2. OQutline in pseudo-code {Occam-like [117]) of the sequence of
operations performed by processor i at each iteration step. In Occam,
processes are built out of more elementary processes, tn a hierarchical
manner, by the use of the constructors SEQ (sequential), PAR (parallel),
WHILE (locp), IF (conditional}, and others. Component processes, here
represented by three dots followed by some text, are indicated by a two-
space indentation relative to the constructor. Some constructors can be
replicated; so e.g, SEQ pulse=0 FOR P means that the component
process is executed P times starling with the counter pulse =0. Note
the different usage of the cell data structure in various systolic pulses.
For symbols explanation see text.

F. BRUGE

integrate the equations of motion according to some
numerical method, te obtain the new positions and
velocities.

To show how the method outlined above enables one to
evaluate all pair interactions without any duplication, we
will refer to Fig. 3. In this figure the cell situation is
presented as seen by processor i in the generic systolic pulse
p (p#0). White circles represent home molecules while
black circles indicate molecules belonging to the circulating
packet which, in that pulse, are visiting processor i. The
highlighted cell is the one that processor is attending to.
Continuous lines connecting particles of the same color in
the same cell symbolize that such particles belong to the
same linked-list formed by each processor with its home
particles, before starting the interaction calculations.
Dashed lines represent some of the interactions evaluated
by processor / in the considered pulse. Note that dashed
lines never join two particles of the same color since the
evaluation of interactions between particles assigned to the
same processor has been completed in the zeroth pulse.

Let us suppose that processor i is considering particle H.
First it will compute the interactions of this particle with
particles belonging to processor ¢ = MOD({i+ p, P) which
in pulse p are its “guests” and that, being in the same cell,
have their head-of-chain in the entry of the circulating
HEAD array relative to the celi under examination (see
Fig. 3A). It will do the same with all other particles in its
own linked-list. Then processor i will consider interactions
between particles in the current cell and those in neigh-
bouring cells. This implies that it will take care, not only of
the interactions between home particles in the current cell
with all guest particles which are in neighbouring ceils, but

L

A) B)

FIG. 3. (A) The processor which, in a certain systolic pulse, is con-
sidering the highlighted cell first will have to compute the interactions
between its own particles (white circles) in that cell and “guest™ particles
(black circles) in ihe same cell. As an example, some of the interactions in
which particle H is involved are represented by dashed lines. Continuous
lines connect particles belonging to the same linked-list. {B} The same
processor of (A), in the same systolic pulse, will also have to compute
interactions of “guest” particles (e.g., particle G) in the highlighted cell with
“home” particles in neighbouring cells, as well as interactions between
“home” particles (e.g., particle H) in the highlighted cell and guest particles
in neighbouring cells.

PARAILLEL CELL LINKED-LISTS METHOD

0-th pulse
1-st pulse
2-nd pulse
£ £ £ E) o
3-rd pulse
E x z] © ©
4—-th pulse

B E o o - 5
5-th pulse
£ o 0 o < .

FIG. 4, Relative positions of fixed (lower} and circulating {upper)
data packets inside each one of the six processors (big squares) of the
systolic ring, in successive pulses. Capital letters denote the parity, even (E)
or odd {Q), of the cells a processor has to loop over in each pulse.

also of the interactions between guest particles which are in
the current cell with all the home particles in neighbouring
cells (see Fig. 3B). In doing so it will resort to the same
trick, used on sequential machines to avoid interaction
duplications, of considering only half of the neighbouring
cells [5]. Thus, for example, a molecule in cell 24 {see
Fig. 1) may interact with molecules in the eight neigh-
bouring cells but processor i only checks chains in cells 31,
32, 25, and 18. Interactions of this molecule with molecules
which are in cells of the same parity of cell 24, i.e., cells 16
and 30, are checked by the same processor in the same
pulse, when cells 16 and 30 are, in their turh, the focus of
attention. Instead, interactions with particles in cells of
different parity, i.e., cells 17 and 23, cannot be checked
by processor i as it is looping over even cells only.
Nevertheless, those interactions will be {or they have
already been) evaluated by processor g when, at a distance
of |P—|2(p—q)|| pulses, it wili take (or it has already
taken) into account celis 17 and 23.

From Fig. 4 it can be seen directly how the proposed
alternation in the parity of the cells to be considered leads
to the correct interaction evaluation without any duplica-
tion. For example, the interactions between particles
assigned to processor 3 and those assigned to processor !
are evaluated partly by processor | in the second systolic
pulse, looping over cells with even indexes only, and partly
by processor 3 which, in the fourth pulse, will consider cells
with odd indexes only.

A concurrent implementation of this algorithm has been

FIG. 5. Typical transputer network consisting of one 1/ processor
(1/0) and six worker processors (W)

265

TABLE 1

Execution Times (in seconds) per Molecular Dynamics Time
Step and Efficiency for a Systern Consisting of 4096 Water
Molecules Interacting via ST2 Potential Simulated on Multi-
Transputer System with Various Numbers of Processors

Number of processors Execution time (s) Efficiency
1 24382 t
5 49.57 098
10 25.69 0.94
20 13.29 0.92
30 9.24 0.88

carried out in Occam [11] for MD simulation of water
molecules interacting via ST2 potential [127]. The physical
system chosen as a test case for evaluating the performance
of the algorithm consists of 4096 water molecules which are
enclosed in a cubic box of 50.70476 A side length. The
standard periodic boundary conditions are imposed and
a potential cutoff of 7.8 4 has been used in water-water
interaction evaluation. An equilibrated configuration at
a temperature of ca. 300° K has been chosen as initial
conditions, and a time step of 5 x 10~ '* s has been used for
the numerical integration of the equations of motion.

To avoid unnecessary complications in the evaluation of
the algorithm’s performance, the simulated system has been
chosen to be homogeneous and in a one-phase liquid
region, so that the load balancing problem is optimally
solved by the simple assignment of an equal {or nearly
equal) number of particles to each processor at the
beginning of the simulation. It is worth noting that more
complicated situations, like simulations of systems under-
going phase transitions, can be efficiently tackled by easily
integrating a newly designed dynamic load balancer [9, 10]
with the present algorithm.

The multi-processor system on which our tests have been
performed is made up of a variable number (up to 30) of
20-MHz 'T800 transputers (designated by W in Fig. 5} with
1-Mbyte external RAM each, connected as a ring, plus a
20-MHz T800 transputer (designated by I/O in Fig. 5) with
8-Mbyte RAM. The latter is interfaced to the host PC/386
and provides 1/0 capabilities to the transputer network.

In Table I results are reported concerning the execution
time values per single MD step that have been obtained by
using various numbers of processors. Values are aiso
reported of the system efficiency E={(T,/P)/Tp, where T,
and T, are the execution times for one-' and P-transputer
systems, respectively.

The algorithm is coded so as to take full advantage of the
ability of the transputer to simultaneously calculate and

' On one-transputer system, a purely sequential, communication-free
program is executed.

266

communicate, as previously suggested [7] (see Fig. 2). By
exploiting this feature, the time taken for data movements is
no more additional to that taken for the force evaluation.
Indeed, by overlapping computation and communication,
data movement is almost completely free as long as packet
transmission {at a rate of 10 Mbits s~ ') takes less time than
the evaluation of forces during one pulse, a condition which
is verified for every number of processors we have con-
sidered in our tests, This situation is to be expected due to
the complexity of the potential used to model water
molecules, and it should hold true up to ~ 10 particles per
processor [7]).

So, the main source of the slight nefficiency has to be
found in the increasing number (P, one per pulse) of loops
over all cells that each processor has to perform as the
processor number increases. As the total number of in-range
interactions does not vary, an increasing amount of time is
wasted in testing empty cells.

To further increase the number of processors without loss
of efficiency, a mixed systolic and geometric parallelization
approach should be adopted. Indeed, a gross geometric par-
tition of physical space among groups of processors, which
share particles belonging to their subspace in a systolic
manner, could reduce the number of cells to be tested and
maintain the high efficiency. Work is in progress to test the
effectiveness of this solution.

ACKNOWLEDGMENTS

The author thanks Professor S. L. Fornili for helpful discussions.
General indirect support from Italian MP1—80%, INFM, and CRRNSM
funding is also acknowledged.

' F. BRUGE

REFERENCES

1. L. Verlet, Phys. Rev. 159, 98 (1967).

. R. W, Hockney and 1. W. Eastwood, Cempurter Simulation Using
Particles (McGraw—Hill, New York, 1981).

3. 1. 1. Morales, L. F. Rull, and 8. Toxvaerd, Comput. Phys. Commun. 56,
129 (1989).

4. W, F. van Gunsteren, H. 1. C. Berendsen, F. Colonna, D. Perahia,
J. P, Hollenberg, and D, Lellouch, J. Comput. Chem. 5, 272 (1984).

5. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford Univ. Press, Oxford, 1987).

6. F. Brugé and S. Fornili, Comput, Phys. Commun. 61, 31 {1990).
7. A. R. C. Raine, D. Fincham, and W. Smith, Comput. Phys. Commun.
55, 13 (1989).
8. F. Brugé and 8. Fornili, J. Comput. Phys. 96, 224 (1991).
9. F. Bruge and S. Fornili, Compus. Phys. Commun. 60, 39 (1990).
10, 1. E. Baillat, F. Brugs, and P. G, Kropf, J. Compue. Phys. 96, 1 (1991},

11. INMOS, OCCAM 2 Reference Manual (Prentice-Hall, Englewood
Cliffs, NJ, 1988).
12. F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974).

[

Received October 19, 1990; revised October 11, 1991

F. BRUGE

Department of Physics,
University of Palermo and CNR-IAIF
Via Archirafi 36, I - 90123 Palermo, Italy

